
GENG555X Research Project

AN ANALYSIS OF THE COMPUTATIONAL
COMPLEXITY OF THE SPIIR PIPELINE

POST-PROCESSING

Thomas Hill Almeida (21963144)

Supervisor:
Professor Linqing Wen

2020-10-06

Contents

1 Introduction 3

2 Background 3
2.1 CUDA . 3
2.2 Analysing complexities of parallelised algorithms . 4

3 Analysis 5
3.1 Maximum reduction with index preservation . 5
3.2 Determining the number of samples over a signal-to-noise threshold 6
3.3 Transposing the input matrices . 6
3.4 Determining the coherent correlation and statistical value of data points 7

3.4.1 Determining the sky direction of the SNR maximum 7
3.4.2 Calculating signal consistency statistics . 7

1

Student ID: 21963144 UWA

3.4.3 Generating time-shifted background noise statistics 8
3.4.4 Overall computational cost . 8

3.5 Calculating heat skymaps . 8

4 Conclusion 8

Bibliography 9

Page 2 of 10

Student ID: 21963144 UWA

1 Introduction

The Summed Parallel Infinite Impulse Response (SPIIR) pipeline, first implemented by Shaun Hooper
in 2012 [3], uses a number of IIR filters to approximate possible gravitational wave signals for detection
followed by post-processing to localize any potential candidates. The pipeline is currently thought to be
the fastest of all existing pipelines, and has participated in every observation run since November 2015,
successfully detecting most events that were seen in more than one detector.

Coherent post-processing was introduced in [4] by Qi Chu et al as an alternative to coincidence post-
processing. [4] states that the multi-detector maximum log likelihood ratio to be equal to the coherent
signal to noise ratio ρ2c , which can be expressed as:

ρ2c = lnLNW
max{Ajk,θ,tc,α,δ}

, (1)

where Ajk describes the relative inclination of the detector to the source, θ is the mass of the source, α
and β are the sky directions of the source and LNW is the network log likelihood network.

In [4], the computational cost of the coherent search is estimated to be O(2N3
dNmNp), where Nd is

the number of detectors, Nm is the number of sets of IIR filters (called templates), and Np is the number
of potential sky locations. Further optimizations were made to the pipeline in 2018 [5], including moving
to using GPU acceleration. Whilst [5] discusses a number of constant time optimizations made to the
pipeline, the computational cost of the overall process is not discussed. In addition, [5] parallelised the
pipeline, leading to additional potential changes to the potential overall cost.

This report aims to determine and justify the computational complexity of the existing SPIIR pipeline
and provide a framework for any further analysis at a later date.

2 Background

2.1 CUDA

CUDA [8] is an extension of the C++ programming language created by NVIDIA that allows for the
development of GPU-accelerated applications. In [5], the SPIIR pipeline had multiple components
rewritten in CUDA to take advantage of the high number of simultaneous threads available compared
to CPUs. As such, it is worth understanding the computational model of CUDA for the analysis of the
coherent post-processing step of SPIIR.

In CUDA, each individual sequence of instructions being executed is called a thread. By its nature,
a highly-parallelised environment such as GPUs will run many individual threads, which are partitoned
into warps, a group of (typically 32) threads. Warps are the smallest unit that GPUs schedule, and
all threads in a warp must execute the same instruction – although each thread maintains its own
instruction pointer and can branch independently from the warp at a small performance cost. The
performance cost of branching within a warp means that a major optimization that does not affect
computational complexity in CUDA can be simply reducing the number of branches. Warps are further
organised into thread blocks, which contain a small amount of fast memory shared between the threads
in the block. Blocks in CUDA are typically executed on the same Simultaneous Multiprocessor (SM).

Page 3 of 10

Student ID: 21963144 UWA

The CUDA Programming Guide ([7]) states that the number of blocks and warps that can reside and be
processed together on an SM depends on the number of registers and shared memory available on the
SM, as well as on a CUDA defined maximum number of blocks and warps.

For the purpose of actual time-based computation, the maximum number of threads that can run at
any given time is determined by a few factors of the CUDA runtime; the maximum number of resident
warps per SM; the maximum number of resident threads per SM; the number of 32-bit registers per
thread; the number of 32-bit registers per SM; the number of 32-bit registers per thread block; and the
amount of shared memory in each of those divisions. Thus, one major determining factor in any speed-up
given by a CUDA operation can be determined by the ability to split the workload across threads and
thread blocks such that the number of registers and used memory is well balanced across threads.

2.2 Analysing complexities of parallelised algorithms

According to [6], the theoretical efficiency of a multi-threaded or parallelised algorithm can be measured
using the metrics of ‘span’, ‘work’, ‘speed-up’ and ‘parallelism’, all of which should be considered in the
context of a directed acyclic graph (DAG) of operations in the algorithm. The work of a parallelised
computation is the total time to execute the entire computation sequentially on a single processor, and
can be found by summing the total work of every vertex in the DAG. In comparison, the span of
a parallelised computation is the maximum time taken to complete any path in the DAG. It should
be noted that the actual running time of a parallelised computation also depends on the number of
processors available for computation and how they are allocated to perform different tasks in the DAG,
and thus denoting the running time of parallelised computation on P processors as TP is also common
practice. This leads to work being denoted at T1 (the time taken to run on a single processor) and span
being denoted as T∞ (the time taken on an infinite number of processors). Another helpful metric is

speed-up, which shows how the algorithm scales with additional processors as SP =
T1

TP
. We can also

then define parallelism as the maximum possible speed-up on an infinite number of processors, and
thus as p =

T1

T∞
.

Using the above definitions, we can re-derive several laws that provide lower bounds on the running
time of TP .

In one step, a computer with P processors can do P units of work, and thus in TP time can perform
PTP units of work. As the total work to be done as per above is T1, the work law states that [6]:

TP ≥ T1

P
. (2)

It is also evident that a computer with P processors cannot run any faster than a computer with
an infinite number of processors, as the computer with an infinite number of processors can emulate a
computer with P processors by using a subset of its processors, leading to the span law [6]:

TP ≥ T∞. (3)

It is also useful to use the metrics of ‘cost’ and ‘efficiency’ when analysing parallel algorithms [1].
The cost of a parallel algorithm is minimised when all of processors are used at every step for useful
computation and thus can be defined as CP = P×TP . Efficiency is closely related to cost and describes

Page 4 of 10

Student ID: 21963144 UWA

speed-up per processor and can be defined as:

eP =
SP

P
=

T1

CP
. (4)

Another helpful theorem for analysis is Brent’s Theorem, which states that for an algorithm that
can run in parallel on N processors can be executed on P < N processors in a time of approximately [2]

TP ≤ TN +
T1 − TN

P
. (5)

This can be approximated with the upper bound of O(
T1

P
+ TN) [1].

Determining the span, work, parallelism, efficiency and cost, and examining the application of Brent’s
theorem to the computations at hand will allow us to analyse the computational complexity of the SPIIR
pipeline.

3 Analysis

3.1 Maximum reduction with index preservation

One of the more common operations in the SPIIR pipeline is the concept of a “maximum reduction with
index preservation”. Reduction is the idea of taking some array of data and producing a single summary
output from that array, whether it is the total sum of the array or the maximum value of the array and
its index in the array as it is in this case.

[9] discusses the computational complexity of reduction algorithms in a parallelised context, noting

that the best complexity according to Brent’s Law is O(
N

logN
) threads each doing O(logN) sequential

work, resulting in a total overall cost of O(
N

logN
× logN) = O(N).

We can note from our own analysis, that the process of reduction can be parallelised by the use of
a binary tree of operations, where each vertex in the binary tree combines the results of the two parent
vertices. In the case of determining the maximum of two numbers, each vertex is identical in the amount
of work done, and thus we can determine each vertex to be a unit of work. As there are N elements in
the original array, we can note that the height of the binary tree is logN , and each level of the binary
tree has Nl/2 vertices, thus the total number of vertices in the binary tree is

∑logN
i=0 2× i = N . Using

this information, we can determine that the work of a parallelised reduction is T1 = O(N × 1) = O(N),
and that the span of the reduction is T∞ = O(logN × 1) = O(logN). Thus, the parallelism of the
reduction is:

p =
N

logN
.

Using the span and work laws, we can observe that any algorithm using the above method is bounded

by the inequalities O(logN) ≤ TP ,
O(N)

P
≤ TP . This means that best possible time complexity with P

processors is O(logN) (equation 3). We can determine the minimum number of processors required to

Page 5 of 10

Student ID: 21963144 UWA

achieve this runtime using the formula TP = O(logN) =
O(N)

P
, which can be rearranged to

P =
N

logN
,

thus the time complexity cannot improve past P = N/ logN processors. We can also observe that using
P = N/ logN processors gives a cost of CP = N , which is identical to the sequential algorithm.

Functions that include maximum reduction with index preservation will be denoted for clarity with
M(x), where x is the size of the array being reduced.

3.2 Determining the number of samples over a signal-to-noise threshold

The coherent post-processing in SPIIR determines the number of samples over a signal-to-noise (SNR)
threshold in order to not do more work than is required. The function that is used for determining the
number of samples over the threshold (peaks_over_thresh) is a sequential algorithm that runs on the
CPU, and shall be analysed as such, although there is an alternative GPU-based implementation that is
not used.

Initially, the function performs a maximum reduction with index preservation to get the maximum
SNR from the combined IIR filters (templates) for each sample. Recalling from section 3.1 that for
maximum reduction with index preservation T1 = O(N), and that this operation is performed S times,
where S is the number of samples, we can determine that this initial reduction has a time complexity of
O(ST), where T is the number of templates.

The function then determines the maximum SNR across the templates found from the previous step
by stepping through every combination of samples and removing SNR samples that are using the same
template and have a lower SNR, resulting in a step with a time complexity of O(S2).

The function then determines the maximum overall SNR for the input samples (O(S)) and cycles
through every maximum SNR to cluster maxima that are close together to be a single combined max-
imum. The number of maxima is bounded by (O(min{S, T})) as there cannot be more maxima than
there are samples or templates.

This gives the overall function a time complexity of O(ST + S2 + S + min{S, T}), which can be
reduced to the dominating terms of:

O(ST + S2).

3.3 Transposing the input matrices

The full post-processing function requires that the input matrix is transposed for better memory access
such that each row is a different template, and each column is a different sample. To transpose the matrix,
the GPU function transpose_matrix is used, thus this should be analysed as a parallel algorithm.

The algorithm in use works by breaking the original array into tiles of size 32×32, and then inserting
the transpose of the tile into an output array. The tiles are further broken down eight processors per row,
so each thread does four copies. We can conceptualise this as a DAG by observing that each tile does

Page 6 of 10

Student ID: 21963144 UWA

not depend on any other tile to be completed, and that each tile is composed of 32 × 8 interdependent
processors, each doing 4 units of work.

Using this observation, we can see that the span of the algorithm is T∞ = (32× 8)× 4 = O(1024) =

O(1), and the work is T1 = O(ST), where S is the number of samples and T is the number of templates.
Thus, the parallelism of the transpose is p = ST .

Using the span and work laws (equations 3 and 2), we can observe that the above method is bounded

by the inequalities O(1) ≤ TP ,
O(ST)

P
≤ TP . Thus it can be determined that the best possible time

complexity with P processors is bounded by ratio of available processors to the size of the transposed
matrix (the work law). This gives the function an overall time complexity of:

O(
ST

P
).

3.4 Determining the coherent correlation and statistical value of data points

The scoring metric of different templates and times is determined using coherent correlation and deter-
mining their statistical value using a chi squared-based distribution. These scoring metrics are performed
using the GPU function ker_coh_max_and_chisq_versatile, and thus should be analysed as a paral-
lelised function.

In this function, each block looks at a different SNR maximum (as discussed in section 3.2) and splits
the threads within the blocks for operations on that peak.

3.4.1 Determining the sky direction of the SNR maximum

Initially, each thread within a block looks at a different sky direction and determines the total signal-
to-noise ratio (SNR) by summing the SNR of each of the detectors at that given sky direction with the
relevant detector arrival time offsets. The time complexity for the calculation of SNR for a given time
offset is O(D +D2), where D is the number of detectors. The maximum SNR for all the sky directions
is then spread across each warp and placed into shared memory before being shared across every thread
in the block, which is an application of the parallelised maximum reduction with index preservation
function discussed in section 3.1.

Thus, the span of determining the sky direction with the highest signal to noise ratio is T∞ =

O(D + D2 + MT∞(S)) and the work is T1 = O(S(D + D2) + MT1(S), where S is the number of sky
directions and M(x) is the complexity of the parallelised maximum reduction with index preservation
function. We can further state that the parallelism of this is equivalent to the number of sky directions,
S + S/ logS.

3.4.2 Calculating signal consistency statistics

After having determined the sky direction with the highest SNR for a given maximum, the function
then calculates a signal-morphology based statistic ξ2D for each detector D. The statistic is a reduced χ2

distribution with D × 2− 4 degrees of freedom and a mean value of 1, and is given in the discrete form
by:

Page 7 of 10

Student ID: 21963144 UWA

ξ2D =

∑m
j=−m |ϱD[j]− ϱD[0]AD[j]|2∑m

j=−m(2− 2|AD[j]|2)
, (6)

where ϱ is the coherent SNR, AD is the vector of the correlation of the given template with the output
from the detector and 2×m is the number of samples.

The numerator of the statistic is calculated by splitting the number of samples between the threads
of a block, followed by combining the results of the statistic across each warp and then each block. The
combination of the statistic across each warp and block is a modification of the parallelised maximum
reduction with index preservation discussed in section 3.1 that uses addition instead of maximum as
the combining binary function. Thus the span of calculating the statistic is T∞ = O(D × MT∞(N))

and its work is T1 = O(D ×MT1(N)), where N is the number of samples. We can then state that the
parallelism of calculating the statistic is equivalent to the parallelism of the reduction, O(N/ logN).

3.4.3 Generating time-shifted background noise statistics

The function then performs a number of time shifts on background noise for use with the significance
estimation. The generation of a single background statistical variant is equal to the total work of the
function so far, save that instead of using blocks for every peak, each warp looks at a different time
shift. Thus, whilst the theoretical time complexity does not change, the number of processors available
is smaller, so the actual runtime each loop is approximately the warp size slower.

3.4.4 Overall computational cost

Overall, this function has a span of T∞ = 2(D +D2 +MT∞(S) +DMT∞(N)), and has T1 = P (S(D +

D2) +MT1(S) +DMT1(N) +B(S(D +D2) +MT1(S))) work, where P is the number of SNR maxima
and B is the number of times shifts made to background noise.

3.5 Calculating heat skymaps

If the coherent SNR exceeds a threshold, the post-processing produces a skymap of the highest SNR in
the GPU function ker_coh_skymap.

The function determines the highest maximum SNR by using the maximum reduction with index
preservation technique discussed in section 3.1. Following this, the function re-performs the process
discussed in section 3.4.1 with additional sky directions and without the reduction to generate the final
skymap.

As such, this function has a span of T∞ = MT∞(P) + D + D2 and total work of T1 = MT1(P) +

S(D +D2).

4 Conclusion

The total span and work of the coherent post-processing step in the SPIIR pipeline is the sum of the
total spans and works of the internal functions. Conversely, we cannot determine the overall parallelism
as the post-processing step spans a number individual functions that can each be run with a different
set of processors. As the step to determine the number of peaks over a threshold (see section 3.2) is

Page 8 of 10

Student ID: 21963144 UWA

sequential, we can consider its time complexity as contributing to both the span and work of the total
pipeline. Another thing to note is that the steps for determining the coherent correlation, statistic value
and skymaps (sections 3.4 and 3.4.1) will be run for every detector.

With this in mind, we can determine that the span of the post-processing is:

T∞ = O(NT +N2 + 1 +D(2(D +D2 + logS +D logN) + logP +D +D2))

= O(NT +N2 +D3 +D2 logN +D logS +D logP), (7)

where D is the number of detectors, S is the number of sky directions, T is the number of templates, N
is the number of samples and P = max{S, T}.

The total work of the post-processing is:

T1 = O(NT +NT + S2 +D(P + S(D +D2) + P (S(D +D2) + S +DN +B(S(D +D2) + S))))

= O(NT +N2 + SPD3 + SPBD3 +ND2), (8)

where D is the number of detectors, S is the number of sky directions, T is the number of templates, N
is the number of samples, B is the number of is the number of times shifts made to background noise
and P = max{S, T}

Bibliography

[1] Henri Casanova, Arnaud Legrand, and Yves Robert. Parallel Algorithms. eng. CRC Press, 2008,
pp. 10–12. doi: 10.1.1.466.8142.

[2] John L. Gustafson. “Brent’s Theorem”. In: Encyclopedia of Parallel Computing. Ed. by David Padua.
Boston, MA: Springer US, 2011, pp. 182–185. isbn: 978-0-387-09766-4. doi: 10.1007/978-0-387-
09766-4_80. url: https://doi.org/10.1007/978-0-387-09766-4_80.

[3] Shaun Hooper et al. “Summed parallel infinite impulse response filters for low-latency detection
of chirping gravitational waves”. eng. In: Physical Review D - Particles, Fields, Gravitation and
Cosmology 86.2 (2012). issn: 1550-7998.

[4] Q. Chu. Low-latency detection and localization of gravitational waves from compact binary coales-
cences. eng. 2017.

[5] Xiaoyang Guo et al. “GPU-Optimised Low-Latency Online Search for Gravitational Waves from
Binary Coalescences”. eng. In: vol. 2018-. EURASIP, 2018, pp. 2638–2642. isbn: 9082797011. url:
https://ieeexplore.ieee.org/document/8553574.

[6] Thomas H. Cormen et al. Introduction to algorithms. eng. 3rd ed. MIT electrical engineering and
computer science series. Cambridge, Mass: MIT Press, pp. 779–781. isbn: 0070131430.

[7] CUDA Programming Guide. url: https://docs.nvidia.com/cuda/cuda- c- programming-
guide/index.html#hardware-multithreading.

[8] CUDA Toolkit. url: https://developer.nvidia.com/cuda-toolkit.

Page 9 of 10

Student ID: 21963144 UWA

[9] Mark Harris. Optimizing Parallel Reduction in CUDA. eng. url: https://developer.download.
nvidia.com/assets/cuda/files/reduction.pdf.

Page 10 of 10

